A deep learning model for generating [18F]FDG PET Images from early-phase [18F]Florbetapir and [18F]Flutemetamol PET images

Sanaat, A., Boccalini, C., Mathoux, G. et al. A deep learning model for generating [18F]FDG PET Images from early-phase [18F]Florbetapir and [18F]Flutemetamol PET images. Eur J Nucl Med Mol Imaging (2024). https://doi.org/10.1007/s00259-024-06755-1

Overview of the Swin UNETR architecture. The input to our model is a single early phase eFBB/eFMM images (different models for eFBP/eFMM were trained separately) and the output is the synthetic [18F]FDG. The Swin UNETR creates non-overlapping patches of the input data and uses a patch partition layer to create windows with a desired size for computing the self-attention. The encoded feature representations in the Swin transformer are fed to a CNN-decoder via skip connections at multiple resolutions

Abstract
Introduction: Amyloid-β (Aβ) plaques is a significant hallmark of Alzheimer’s disease (AD), detectable via amyloid-PET imaging. The Fluorine-18-Fluorodeoxyglucose ([18F]FDG) PET scan tracks cerebral glucose metabolism, correlated with synaptic dysfunction and disease progression and is complementary for AD diagnosis. Dual-scan acquisitions of amyloid PET allows the possibility to use early-phase amyloid-PET as a biomarker for neurodegeneration, proven to have a good correlation to [18F]FDG PET. The aim of this study was to evaluate the added value of synthesizing the later from the former through deep learning (DL), aiming at reducing the number of PET scans, radiation dose, and discomfort to patients.

Methods: A total of 166 subjects including cognitively unimpaired individuals (N = 72), subjects with mild cognitive impairment (N = 73) and dementia (N = 21) were included in this study. All underwent T1-weighted MRI, dual-phase amyloid PET scans using either Fluorine-18 Florbetapir ([18F]FBP) or Fluorine-18 Flutemetamol ([18F]FMM), and an [18F]FDG PET scan. Two transformer-based DL models called SwinUNETR were trained separately to synthesize the [18F]FDG from early phase [18F]FBP and [18F]FMM (eFBP/eFMM). A clinical similarity score (1: no similarity to 3: similar) was assessed to compare the imaging information obtained by synthesized [18F]FDG as well as eFBP/eFMM to actual [18F]FDG. Quantitative evaluations include region wise correlation and single-subject voxel-wise analyses in comparison with a reference [18F]FDG PET healthy control database. Dice coefficients were calculated to quantify the whole-brain spatial overlap between hypometabolic ([18F]FDG PET) and hypoperfused (eFBP/eFMM) binary maps at the single-subject level as well as between [18F]FDG PET and synthetic [18F]FDG PET hypometabolic binary maps.

Results: The clinical evaluation showed that, in comparison to eFBP/eFMM (average of clinical similarity score (CSS) = 1.53), the synthetic [18F]FDG images are quite similar to the actual [18F]FDG images (average of CSS = 2.7) in terms of preserving clinically relevant uptake patterns. The single-subject voxel-wise analyses showed that at the group level, the Dice scores improved by around 13% and 5% when using the DL approach for eFBP and eFMM, respectively. The correlation analysis results indicated a relatively strong correlation between eFBP/eFMM and [18F]FDG (eFBP: slope = 0.77, R2 = 0.61, P-value < 0.0001); eFMM: slope = 0.77, R2 = 0.61, P-value < 0.0001). This correlation improved for synthetic [18F]FDG (synthetic [18F]FDG generated from eFBP (slope = 1.00, R2 = 0.68, P-value < 0.0001), eFMM (slope = 0.93, R2 = 0.72, P-value < 0.0001)).

Conclusion: We proposed a DL model for generating the [18F]FDG from eFBP/eFMM PET images. This method may be used as an alternative for multiple radiotracer scanning in research and clinical settings allowing to adopt the currently validated [18F]FDG PET normal reference databases for data analysis.

Image reconstruction using UNET-transformer network for fast and low-dose PET scans

Kaviani S, Sanaat A, Mokri M, Cohalan C, Carrier JF. Image reconstruction using UNET-transformer network for fast and low-dose PET scans. Comput Med Imaging Graph. 2023 Dec;110:102315. doi: 10.1016/j.compmedimag.2023.102315.

Schematic of proposed TrUNET network architecture. The input of the network is the reconstructed low-count image after each iteration and a corresponding co-registered MRI image.

Abstract
Introduction: Low-dose and fast PET imaging (low-count PET) play a significant role in enhancing patient safety, healthcare efficiency, and patient comfort during medical imaging procedures. To achieve high-quality images with low-count PET scans, effective reconstruction models are crucial for denoising and enhancing image quality. The main goal of this paper is to develop an effective and accurate deep learning-based method for reconstructing low-count PET images, which is a challenging problem due to the limited amount of available data and the high level of noise in the acquired images. The proposed method aims to improve the quality of reconstructed PET images while preserving important features, such as edges and small details, by combining the strengths of UNET and Transformer networks.

Methods: The proposed TrUNET-MAPEM model integrates a residual UNET-transformer regularizer into the unrolled maximum a posteriori expectation maximization (MAPEM) algorithm for PET image reconstruction. A loss function based on a combination of structural similarity index (SSIM) and mean squared error (MSE) is utilized to evaluate the accuracy of the reconstructed images. The simulated dataset was generated using the Brainweb phantom, while the real patient dataset was acquired using a Siemens Biograph mMR PET scanner. We also implemented state-of-the-art methods for comparison purposes: OSEM, MAPOSEM, and supervised learning using 3D-UNET network. The reconstructed images are compared to ground truth images using metrics such as peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and relative root mean square error (rRMSE) to quantitatively evaluate the accuracy of the reconstructed images.

Results: Our proposed TrUNET-MAPEM approach was evaluated using both simulated and real patient data. For the patient data, our model achieved an average PSNR of 33.72 dB, an average SSIM of 0.955, and an average rRMSE of 0.39. These results outperformed other methods which had average PSNRs of 36.89 dB, 34.12 dB, and 33.52 db, average SSIMs of 0.944, 0.947, and 0.951, and average rRMSEs of 0.59, 0.49, and 0.42. For the simulated data, our model achieved an average PSNR of 31.23 dB, an average SSIM of 0.95, and an average rRMSE of 0.55. These results also outperformed other state-of-the-art methods, such as OSEM, MAPOSEM, and 3DUNET-MAPEM. The model demonstrates the potential for clinical use by successfully reconstructing smooth images while preserving edges. The comparison with other methods demonstrates the superiority of our approach, as it outperforms all other methods for all three metrics.

Conclusion: The proposed TrUNET-MAPEM model presents a significant advancement in the field of low-count PET image reconstruction. The results demonstrate the potential for clinical use, as the model can produce images with reduced noise levels and better edge preservation compared to other reconstruction and post-processing algorithms. The proposed approach may have important clinical applications in the early detection and diagnosis of various diseases.

Projection Space Implementation of Deep Learning–Guided Low-Dose Brain PET Imaging Improves Performance over Implementation in Image Space.

Sanaat A, Arabi H, Mainta I, Garibotto V, Zaidi H. Projection Space Implementation of Deep Learning-Guided Low-Dose Brain PET Imaging Improves Performance over Implementation in Image Space. J Nucl Med. 2020 Sep;61(9):1388-1396. doi: 10.2967/jnumed.119.239327.

Schematic diagram of modified 3D U-net, consisting of encoder–decoder CNN. Tensors are indicated by boxes, whereas arrows denote computational operations. Number of channels is indicated beneath each box in bottom left panel. Input and output of this network are LD and FD image PET pairs either in image or sinogram space. BN = batch normalization; ReLU = rectified linear unit activation.

Abstract
Introduction: Our purpose was to assess the performance of full-dose (FD) PET image synthesis in both image and sinogram space from low-dose (LD) PET images and sinograms without sacrificing diagnostic quality using deep learning techniques.

Methods: Clinical brain PET/CT studies of 140 patients were retrospectively used for LD-to-FD PET conversion. Five percent of the events were randomly selected from the FD list-mode PET data to simulate a realistic LD acquisition. A modified 3-dimensional U-Net model was implemented to predict FD sinograms in the projection space (PSS) and FD images in image space (PIS) from their corresponding LD sinograms and images, respectively. The quality of the predicted PET images was assessed by 2 nuclear medicine specialists using a 5-point grading scheme. Quantitative analysis using established metrics including the peak signal-to-noise ratio (PSNR), structural similarity index metric (SSIM), regionwise SUV bias, and first-, second- and high-order texture radiomic features in 83 brain regions for the test and evaluation datasets was also performed.

Results: All PSS images were scored 4 or higher (good to excellent) by the nuclear medicine specialists. PSNR and SSIM values of 0.96 ± 0.03 and 0.97 ± 0.02, respectively, were obtained for PIS, and values of 31.70 ± 0.75 and 37.30 ± 0.71, respectively, were obtained for PSS. The average SUV bias calculated over all brain regions was 0.24% ± 0.96% and 1.05% ± 1.44% for PSS and PIS, respectively. The Bland–Altman plots reported the lowest SUV bias (0.02) and variance (95% confidence interval, −0.92 to +0.84) for PSS, compared with the reference FD images. The relative error of the homogeneity radiomic feature belonging to the gray-level cooccurrence matrix category was −1.07 ± 1.77 and 0.28 ± 1.4 for PIS and PSS, respectively.

Conclusion: The qualitative assessment and quantitative analysis demonstrated that the FD PET PSS led to superior performance, resulting in higher image quality and lower SUV bias and variance than for FD PET PIS.

Deep learning-assisted ultra-fast/low-dose whole-body PET/CT imaging

Sanaat A, Shiri I, Arabi H, Mainta I, Nkoulou R, Zaidi H. Deep learning-assisted ultra-fast/low-dose whole-body PET/CT imaging. Eur J Nucl Med Mol Imaging. 2021 Jul;48(8):2405-2415. doi: 10.1007/s00259-020-05167-1.

Schematic architecture of the cycle-consistent generative adversarial network (CycleGAN) model used for FD PET synthesis. The left panel depicts the training process whereas the right panel shows the process of testing and the structure of the generator and discriminator.

Abstract
Introduction: Tendency is to moderate the injected activity and/or reduce acquisition time in PET examinations to minimize potential radiation hazards and increase patient comfort. This work aims to assess the performance of regular full-dose (FD) synthesis from fast/low-dose (LD) whole-body (WB) PET images using deep learning techniques.

Methods: Instead of using synthetic LD scans, two separate clinical WB 18F-Fluorodeoxyglucose (18F-FDG) PET/CT studies of 100 patients were acquired: one regular FD (~ 27 min) and one fast or LD (~ 3 min) consisting of 1/8th of the standard acquisition time. A modified cycle-consistent generative adversarial network (CycleGAN) and residual neural network (ResNET) models, denoted as CGAN and RNET, respectively, were implemented to predict FD PET images. The quality of the predicted PET images was assessed by two nuclear medicine physicians. Moreover, the diagnostic quality of the predicted PET images was evaluated using a pass/fail scheme for lesion detectability task. Quantitative analysis using established metrics including standardized uptake value (SUV) bias was performed for the liver, left/right lung, brain, and 400 malignant lesions from the test and evaluation datasets.

Results: CGAN scored 4.92 and 3.88 (out of 5) (adequate to good) for brain and neck + trunk, respectively. The average SUV bias calculated over normal tissues was 3.39 ± 0.71% and − 3.83 ± 1.25% for CGAN and RNET, respectively. Bland-Altman analysis reported the lowest SUV bias (0.01%) and 95% confidence interval of − 0.36, + 0.47 for CGAN compared with the reference FD images for malignant lesions.

Conclusion: CycleGAN is able to synthesize clinical FD WB PET images from LD images with 1/8th of standard injected activity or acquisition time. The predicted FD images present almost similar performance in terms of lesion detectability, qualitative scores, and quantification bias and variance.

The quest for multifunctional and dedicated PET instrumentation with irregular geometries

Sanaat A, Amini M, Arabi H, Zaidi H. The quest for multifunctional and dedicated PET instrumentation with irregular geometries. Ann Nucl Med. 2024 Jan;38(1):31-70. doi: 10.1007/s12149-023-01881-6.

Overview of dedicated/irregular PET scanner geometries over the last 70 years. Courtesy of various sources, Refs. [555586869118,119,120,121,122,123,124,125]. ©IEEE. Reprinted, with permission, from Refs. [68121,122,123]. ©RSNA, Reprinted, with permission, from Ref. [119]. ©SNMMI Reprinted, with permission, from Ref. 120. ©IOP Publishing Ltd. with permission, from [555]. ©John Wiley & Sons. Reprinted, with permission, from Ref. [58].

Abstract
Introduction: We focus on reviewing state-of-the-art developments of dedicated PET scanners with irregular geometries and the potential of different aspects of multifunctional PET imaging. First, we discuss advances in non-conventional PET detector geometries. Then, we present innovative designs of organ-specific dedicated PET scanners for breast, brain, prostate, and cardiac imaging. We will also review challenges and possible artifacts by image reconstruction algorithms for PET scanners with irregular geometries, such as non-cylindrical and partial angular coverage geometries and how they can be addressed. Then, we attempt to address some open issues about cost/benefits analysis of dedicated PET scanners, how far are the theoretical conceptual designs from the market/clinic, and strategies to reduce fabrication cost without compromising performance.